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In this joint theoretical, numerical and experimental study, we investigate the 
phenomenon of forced generation of nonlinear waves by disturbances moving 
steadily with a transcritical velocity through a layer of shallow water. The plane 
motion considered here is modelled by the generalized Boussinesq equations and the 
forced Korteweg-de Vries (fKdV) equation, both of which admit two types of forcing 
agencies in the form of an external surface pressure and a bottom topography. 
Numerical results are obtained using both theoretical models for the two types of 
forcings. These results illustrate that within a transcritical speed range, a succession 
of solitary waves are generated, periodically and indefinitely, to form a procession 
advancing upstream of the disturbance, while a train of weakly nonlinear and weakly 
dispersive waves develops downstream of an ever elongating stretch of a uniformly 
depressed water surface immediately behind the disturbance. This is a beautiful 
example showing that the response of a dynamic sy_stem to steady forcing need not 
asymptotically tend to a steady state, but can be conspicuously periodic, after an 
impulsive start, when the system is being forced at  resonance. 

A series of laboratory experiments was conducted with a cambered bottom 
topography impulsively started from rest to a constant transcritical velocity U,  the 
corresponding depth Froude number F = U/(gh,)i (g being the gravitational constant 
and h, the original uniform water depth) being nearly the critical value of unity. For 
the two types of forcing, the generalized Boussinesq model indicates that the surface 
pressure can be more effective in generating the precursor solitary waves than the 
submerged topography of the same normalized spatial distribution. However, 
according to the fKdV model, these two types of forcing are entirely equivalent. 
Besides these and some other rather refined differences, a broad agreement is found 
between theory and experiment, both in respect of the amplitudes and phases of the 
waves generated, when the speed is nearly critical (0.9 < F < 1.1)  and when the 
forcing is sufficiently weak (the topography-height to water-depth ratio less than 
0.15) to avoid breaking. Experimentally, wave breaking was observed to occur in the 
precursor solitary waves at low supercritical speeds (about 1.1 < F < 1.2) and in the 
first few trailing waves at  high subcritical speeds (about 0.8 < F < 0.9), when 
sufficiently forced. For still lower subcritical speeds, the trailing waves behaved more 
like sinusoidal waves as found in the classical case and the forward-running solitary 
waves, while still experimentally discernible and numerically predicted for 0.6 > 
F > 0.2, finally disappear at F x 0.2. In the other direction, as the Froude number is 
increased beyond F x 1.2, the precursor soliton phenomenon was found also to 
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evanesce as no finite-amplitude solitary waves can outrun, nor can any two- 
dimensional waves continue to follow, the rapidly moving disturbance. In  this 
supercritical range and for asymptotically large times, all the effects remain only 
local to the disturbance. Thus, the criterion of the fascinating phenomenon of the 
generation of precursor solitons is ascertained. 

1. Introduction 
Since the term soliton was coined by Zabusky & Kruskal (1965), research 

exploration of various nonlinear wave phenomena has brought forth a quite 
dramatic rise in scientific activities in this rapidly developing field. These studies 
have added important new concepts and understanding to the general subject 
opened by the first recorded observation of a ‘great solitary wave’ in 1834 by John 
Scott Russell and then firmly founded on theoretical basis by Boussinesq, Rayleigh 
and Korteweg & de Vries. The impressive conceptual growth and the colourful 
developments of powerful mathematical methods achieved along the wide frontiers 
of this field extend far and deep into fluid mechanical, physical, chemical, biological 
and mathematical disciplines and genuinely constitute an outstanding inter- 
disciplinary subject of modern day mathematical physics. These notable advances 
can primarily be attributed to the outstanding feature that the model systems 
possess infinitely many conservation laws rendering the basic equations integrable. 
Under this premise, methods of solution have been developed, including Backlund 
transforms, inverse scattering and other inverse methods, modulation theory, etc. 
(recent reviews can be found in Miles 1980 ; Dodd et al. 1982 ; Bullough & Caudrey 
1980; Rebbi & Soliani 1984). 

Of particular interest here, we note that these activities have been confined largely 
to physically closed systems, admitting no exchanges of mass, momentum and 
energy with external agencies. Furthermore, only limited efforts have been extended 
to considering problems in more than one horizontal spatial dimension. In  this work, 
we carry out a joint theoretical, numerical and experimental study of a physically 
open, soliton-bearing system when the system is being continuously forced near 
resonance, complementing the recent study by Wu (1987), who also gave a brief 
survey of this subject. 

To facilitate studies of nonlinear dispersive wave phenomena occurring in 
physically open systems, Wu (1979, 1981) generalized the Boussinesq equations to 
incorporate possible exchanges of mass, momentum and energy, in more than one 
space dimension, with some external agencies, and obtained a model for weakly 
nonlinear and weakly dispersive long waves in water with depth gradually varying 
in two horizontal dimensions and with moving surface pressure and submerged 
topography admitted as forcing functions. The two equations for the free-surface 
elevation and the layer-mean velocity potential are derived using the basic set of 
transport theorems and the nonlinear boundary conditions. They are called the 
generalized Boussinesq (g-B) equations. From their solutions and the expansion 
equations used therein, the pressure and velocity fields are determined. This model 
was employed by Wu & Wu (1982) to give the first reported discovery of the 
phenomenon of precursor solitons, or the so-called ‘runaway solitions ’. It has also 
been applied by Schember (1982) to calculate some three-dimensional nonlinear long- 
wave problems and by Lepelletier (1981) and Lepelletier & Raichlen (1987) to 
evaluate several tsunami and harbour oscillation problems. 



Upstream-advancing solitary waves for moving disturbances 57 1 

A different approach was proposed by Green & Naghdi (1976a, b) based on the 
concept of a directed-sheet model. With the horizontal velocity component assumed 
independent of the vertical z-coordinate and the vertical velocity component varying 
linearly in z, the equations of motion are derived by invoking conservation of mass 
and momentum in a depth-integrated form together with the exact boundary 
conditions. Thus, the motion described by the Green-Naghdi ( G N )  equation is not 
irrotational, and there lacks a systematic procedure for higher-order improvements. 
(However, Shields 1986 has proposed a varied approach to ‘direct theory’ including 
the higher orders.) Some simple forms of the G N  model have been applied by 
Ertekin (1984) and by Ertckin, Webster & Wehausen (1984, 1986) to problems of 
soliton generation, with results compared to other theoretical models. 

In addition to these models, the forced KortewegAe Vries (fKdV) equation was 
applied by Akylas (1984) and Cole (1985) to the case of a pointed surface-pressure 
forcing. Grimshaw & Smyth (1986), Smyth (1987), Zhu (1986), Zhu, Wu & Yates 
(1986, 1987), and Melville & Helfrich (1987) derived the forced KdV equation for 
various cases and applied i t  to evaluate the internal solitary waves generated in EL 

density-stratified layer of water by moving disturbances. These papers are of course 
quite general and not restricted only to studies of internal solitary waves. 

The problem of generation of nonlinear waves in two horizontal space dimensions 
has been investigated by Mei (1986) based on approximations for slender bodies in 
a shallow channel, by Ertekin et al. (1986) employing Green-Naghdi’s theory for 
three-dimensional calculations, by Wu & Wu (1987) based on the generalized 
Boussinesq model, and has also been evaluated by Katsis & Akylas (1987) using the 
Kadomtsev-Petviashvili (K-P) model. These studies showed that a slender ship, or 
a surface-pressure patch of rectangular planform moving near the critical speed in a 
shallow channel of finite width can periodically radiate upstream-advancing solitons 
with crests stretched straight across the channel. In several specific cases, 
comparisons between the numerical results carried out using the various theoretical 
models indicate that the main features of the solutions appear to be in good 
agreement. Although a few attempts were also made in these studies to compare 
theory and experiment, only qualitative agreement between them can be inferred 
because no cases have so far been available with exactly the same basis to match the 
comparison. 

The purpose of the present work is to carry out a joint numerical and experimental 
investigation of the generation of nonlinear dispersive waves by two-dimensional 
disturbances in the form of a submerged topography or a surface-pressure patch 
moving with a transcritical speed in a shallow channel. Both the g-B model and the 
fKdV model are employed for numerical studies, which include calculations of 
several derived flow quantities. A finite-difference numerical method similar to the 
original scheme introduced by Wu & Wu (1982) is adopted for computation over a 
range of the depth Froude number. The phenomenon of precursor solitions is 
predicted by both models ; the results from the two models are qualitatively similar 
within a certain range of transcritical speeds, in which the generation process is 
shown to continue periodically and indefinitely. Some more refined differences 
between the two models will be examined later. 

Experiments were conducted for a two-dimensional topography moving with a 
uniform transcritical velocity along the floor of a water tank. Comparison between 
experimental and numerical results of the two models investigated shows that the 
agreement is generally very good, in terms of both the amplitude and the phase of 
the waves generated, especially a t  critical and near critical speeds. As the Froude 
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FIGURE 1.  The coordinate system and the two types of forcing agencies under consideration : 
the surface pressure pa@, t )  and bottom topography b(x, t ) .  

number departs from 1, the fKdV model is found to  increasingly overpredict, but 
only slightly the experimental results, while the g-B model consistently under- 
estimates, very slightly, the wave amplitude for the case of a submerged 
topography. Wave breaking was observed experimentally in the leading precursor 
solitary waves a t  low supercritical speeds and in the leading trailing waves a t  high 
subcritical speeds for sufficiently strong disturbances. The mechanism responsible for 
the breaking of these waves lies beyond what the theoretical models are intended to 
predict and is left for future studies. 

2. The theoretical models 
For investigating the problem of generation of nonlinear waves on shallow water 

by forcing disturbances moving through the water layer, we shall adopt both the 
model proposed by Wu (1979,1981) and the KdV model used by Lee (1985) and Wu 
(1987). Both models admit forcing functions in the form of a surface pressure and a 
submerged topography (see figure 1) .  The fluid, initially a t  rest under gravity and 
occupying a layer of uniform depth h,, is assumed inviscid and incompressible and 
the resulting motion, irrotational. Two-dimensional motions of this kind are 
governed by the Laplace equation for the velocity potential @(s,z,t), and the 
boundary conditions a t  the free surface and the bottom are given by 

qLx + $,, = 0, - 1 + b(x, t )  < z a x ,  t ) ,  (1) 

9, = ~(ct++xc,) on z = (;(s,t), (2) 

C+$,+K@+ l/a9221 = -p&,t) ,  z = 6(X>t), (3) 

(b, = e(b;+$,b,) ,  z = - 1 +b(x, t), (4) 

where the horizontal coordinate x is scaled by a typical wavelength A,  the vertical 
coordinate z by the constant undisturbed water depth h,, and the time t by h/c,; 
c, = (gh,); is the characteristic critical speed, and g is the gravitational acceleration. 
The free surface elevation 5 and the topography b(x, t) are scaled by h,, the velocity 
potential #(s, z ,  t )  by c, A, and the pressure p(x, z ,  t) and surface pressure p,(z, t )  by 
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pgh,. From the normalization, two important parameters arise, with E = (h,/h)2 
providing a measure of the dispersive effects and with a = a/h,, where a is a typical 
wave amplitude, giving an estimate of the nonlinear effects. For long-wave theory, 
E < 1 ; and the nonlinear and dispersive effects are brought into a proper balance, 
such as for the Boussinesq class and the present work, if 

a 2 

= (2) < 1, a = - <  1, a = o ( E ) .  

h, 
The above scaling implies that in the wave frame of reference following a primary 
wave the normalized quantities 5, q5, q5t ,  and q5x are all O(a). The two external forcing 
disturbances, namely the surface pressure pa(z ,  t )  and topography b(z, t ) ,  are further 
assumed to be small and slowly varying functions such that 

[pal, Ibl = O ( a ) ;  lbxl, lbtl, b a x l ,  ba t1  O(a). (6) 

By using the expansions of $(x, z ,  t )  and &Jx, t )  in a power series of E ,  the generalized 
Boussinesq equations are derived as follows (see Wu 1979, 1981 ; Lee 1985), 

Ct+[(1-b+5)6& = bt, 

5+ $t + px - $$& = - P, - W t t ,  

where 6 is the layer-mean velocity potential defined as 

$(z,t) = ~ [ #(z, z, t )  dz. 
l - b + <  - l+b  

(9) 

Equations (7) and (8) have a relative error (with respect to the leading term) of 
O(ae,e2). The original set of equations obtained by Wu (1979, 1981, equations (41), 
(42) therein), based on the less restrictive assumption that b, = O(l ) ,  reduce to (7) 
and (8) if, in h = h,-b,  b is taken of O(a) and its dependence on the third dimension 
y is removed. 

As a variant of the above two-equation g-B model, (7) and (8) can be readily 
combined by eliminating C(x, t )  to yield a single fourth-order partial differential 
equation for $ as 

In  this generalized Boussinesq single-equation model, the two disturbances appear to 
their leading order in simple additive form (pa+ b) ,  relative to which the last term in 
(lo),  or the b,, term in (8) is higher in order and is further indicative that, of the two 
disturbances, the moving topography bears additional dispersive effects. Equation 
(10) suggests that a surface pressure would produce a quite similar solution in 
comparison to a bottom topography of the same distribution; however, (10) is 
deduced from (7) and (8) with further approximation of the Boussinesq class and is 
numerically not identical with the system (7)  and (8). Lepelletier (1981) and 
Schember (1982) derived a similar equation under the same assumptions as Wu 
(1979), which was used in their numerical studies. 

The KdV class of equation with imposed forcing can be derived from the above g- 
B model by restricting the wave propagation to be unidirectional. There are several 
different methods of derivation, one using a particular slow timescale for describng 
the motion as viewed in the wave frame, as shown by Grimshaw & Smyth (1986) and 
Wu (1987), and another being based on consistency of the order expansion as 

19-2 
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illustrated by Whitham (1974) for the homogeneous case. We present below a 
derivation along the second approach, which has some interesting features of its 
own. 

First we differentiate (8) with respect to x and modify the result and (7) as 

C,+[(l-ab+ag).ii]x = ab,, ( 1 1 )  

Q + tit + u t ~ t i ~  - +tixxt = - upax, (12) 

with ti, the layer-mean horizontal velocity component, replacing a6/ax, the x- 
derivative of the layer-mean velocity potential, which restores the original exact 
continuity equation ( 1  1 )  (Wu 1981, equation (37)). Further, we have inserted in ( 1 1 )  
and (12) factors of a to indicate, for convenience of operation, the order of the 
respective terms with reference to the leading terms. So that no secular terms will 
arise in the following expansion, the forcing functions are taken O(a2).  

First, the arbitrary pa and b are required to move near the critical speed, and hence 
for left-moving disturbances we take 

pa=pa(x+( l+8)t ) ,  b =b(x+( l+a)t ) ,  (13) 

where 8, the detuning parameter, is O(a) and b, can be replaced by b, with a relative 
error of O(a).  Now, to the lowest order, ( 1 1 )  and (12) reduce to 

which gives 

&+tix = 0, cx+tit = 0, 

u = - g ,  Q - 5, = 0. 
- 

Seeking a solution, correct to the two leading orders in a, in the form 

ti = - c+aA + O(a2), (16) 

~ t - ~ x + ~ ( ~ , - 2 Y C , - ~ t )  = O(a2) ,  (17) 

with A assumed a function of 6 and its derivatives, ( 1  1 )  and (12) become 

where 6 = e/a = O(1).  By using (15) in the second-order terms, (17)  and (18) are 
consistent if 

(19) A = l p - l A  4 seCx:,t+i(b-pa), 

by which (17) and (18) coincide and they together with (16) give 

Q-(l+W Q - i ~ Q s x  = h(Pa+b).z, 

t~ = - ~ + a U s - ~ ~ , ; , , + ~ U ( b - p , ) .  

Equation (20) is the fKdV equation sought. Equation (21), similar to a Riemann 
invariant, provides the layer-mean velocity to  the same order as given by (20). 
These results, with an error term of O(a2) ,  agree with Wu (1987) for arbitrary pa and 
b distributions. Note that for right-going waves we only need to change the sign of 
the Q term in (20) and the sign of ti in (21). Finally, the problem is completed by 
specifying initial conditions for 6 and t~ a t  t = 0. We may further set a and E to unity 
by rescaling. 
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3. Wave resistance and work-energy relation 
A disturbance moving through an inviscid fluid having a free surface generally 

experiences a resistance due to generation and radiation of surface waves. This 
resistance is the streamwise component of the resultant hydrodynamic pressure 
acting on the moving body surface, which in coefficient form, for the present two- 
dimensional case for a left-going disturbance, is 

where p, = p(x, - h, + b, t) denotes the hydrodynamic pressure acting on the 
topography surface and we have rescaled so that a = 6 = 1. 

To maintain a specified motion of the disturbance, a mechanical power is required. 
By the energy principle for the present case of an incompressible and inviscid fluid, 
the mechanical power input is equal to the rate of increase in the total energy of the 

~~ 

system, E ,  so that s, (23) 
- dE = -Jvu-(Vp)dV= - V.(pu)dV, 
dt 

where E is the integral of [i(Vq5)z + 23 throughout the fluid volume V. Accordingly, for 
the configuration a t  hand, 

{[p(uC, - w)12-5- [p(ub, - W)l2--h> dx. (24) 

The first integral in the last expression vanishes because of the boundary conditions 
a t  infinity, so that by making use of the boundary conditions (2) and (4) we have 

I n  the body frame of reference (x’, z‘, t’) moving uniformly to the left with the 
Froude number F = U / c ,  of the disturbance, where 

X’ = x+Ft ,  2’ = Z, t’ = t ,  (26) 

we have ct = Q.+F[,., and a similar expression for b,. Hence the workmergy 
relation (25) becomes 

E = FCDW+&;’,, (27) 

where 

represents the rate of work due to any vertical wave motion underneath the surface 
pressure and any vertical movement of the submerged topography apparent to the 
moving frame. Note that the contribution to Ev from the term with pb vanishes if the 
topography is restrained from vertical movement in the body frame. 

Finally, the pressure p, is obtained from the Bernoulli equation applied to  the 
upper surface of the topography, 
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This equation, when combined with the Bernoulli equation applied to the free 
surface, 

and noting that to leading order # is independent of z,  gives the pressure on the 
bottom as 

p ,  = l + { - b + p a + O ( 2 ) ,  

which is the hydrostatic pressure to the order retained. For the fKdV model, pa and 
b are to be neglected in (31) for consistency. 

4. Numerical results and discussion 
Although the two models developed in $2 belong to the same class as the original 

Boussinesq model, all being characterized by (5 ) ,  it is of interest to compare their 
numerical results, namely, the results of the g-B equations (7) and (8) and the fKdV 
equation (20). In both cases, finite-difference methods based upon the improved 
numerical scheme employed by Wu & Wu (1982) are adopted. 

For reasons of numerical stability in solving the fKdV equation, as first pointed 
out by Benjamin, Bona & Mahony (1972), it is preferred to replace the dispersion 
term Q,, with cXxt, which is obtained by using the lowest-order approximation (see 
(15)) for this modification. For both the fKdV and g-B equations, forward differences 
are used for time derivatives and central differences for spatial derivatives. The 
resulting difference equations are solved in a finite spatial domain ( x ,  < x < xM), 
which is called a window, and the uniform grid sizes in space and in time are denoted 
by A x  and At, respectively. A predictor-corrector method is employed without 
iteration at the corrector stage, and both stages reduce to the inversion of a constant 
tridiagonal matrix, which is strictly diagonally dominant (for details see Lee 
1985). 

To keep the computational window reasonably small, we introduce a pseudo- 
moving frame, which moves in the same direction as the disturbance. The reference 
frame is fixed with respect to the fluid (at rest) at x = & 00, and only the region of 
computation undergoes stepwise shifts ; hence the name pseudo-moving frame. The 
boundary conditions imposed on the computational boundaries are called open or 
transparent boundary conditions, and they are intended to permit the passage of a 
wave through the boundaries with as little non-physical reflections from the 
boundaries as possible in order not to contaminate the region of computation beyond 
a certain error limit. We use 

ct = lkcm 
where the sign is taken for each window border so that the waves always propagate 
out of the window. 

If At and Ax are chosen such that 
Ax J = - -  

F At (33) 

is an integer greater than 1 ( J  = 2,3,4,  ...), then the disturbance travels a distance 
Ax in J timesteps. If the window is shifted every J timesteps and if we view the 
solution only when the window is just shifted, the position of the disturbance in the 
window will not change. At each time of window shifting, a new grid point emerges 
into view from the upstream side of the window while an old grid point disappears 
at  the downstream side as it moves behind the window. In this way the mechanical 
laws are always referred to the fluid frame, and only the region of computation 



Upstream-advancing solitary waves for  moving disturbances 577 

undergoes stepwise changes. As the shifting is done in the direction of the motion of 
the disturbance, the downstream boundary always chases any non-physical waves 
reflected from 'this boundary due to any imperfectness of the open boundary 
condition. If we assume that the reflected waves are small in magnitude but remain 
long in wavelength, they must propagate with a speed close to the critical speed. 
Therefore, when disturbances move with F x 1.0, the reflected waves from the 
downstream boundary cannot move far from the boundary with the window shifting. 
The upstream boundary is taken far enough away from the forerunning waves so 
that no waves of significant size encounter that boundary. To provide the new 
upstream boundary value of g when the window is shifted, we use the same principle 
used for the open boundary condition (32). 

The stability and the convergence of the code was first tested for the homogeneous 
case, pa = b = 0, with a prescribed initial wave which is a solution of permanent 
form. In this way we were able to ascertain the best range of Ax and At, and good 
results were obtained when compared to exact solutions for the KdV equation and 
to other numerical results for the Boussinesq equations. For the case of 
inhomogeneous problems, J in (33) is chosen for given F as an integer so that 

Ax 
At 

J F  = --w 2. (34) 

Although our numerical scheme is implicit, for convergence it is generally believed 
safe to maintain the Courant-Friedrichs-Lewy condition and to allow a margin to 
account for possible departure of the condition due to the effects of nonlinearity. We 
obtained satisfactory results for Ax = 0.2 and At determined by (34) and used these 
values for most of the results presented in this study. 

We first consider a surface pressure distribution of the form 

p,(X,  T )  = pmsin2 - ( X + F T )  for 0 < ( X + F T )  < L,  [z 1 (35) 

and pa = 0 elsewhere, where L is the length of the disturbance referenced to h,, X is 
referenced to h, and T to h,/c,. The motion starts impulsively from rest a t  T = 0, 
and X = 0 is taken a t  the initial leading edge of the disturbance. The water surface 
elevation and the wave resistance coefficient were computed for various values of 
F(O.1-1.3) andp,(= 0.05,0.1,0.15). While thelower range o f F  = 1+6down toO.l 
is admittedly quite beyond the appropriate detuning range originally intended for S 
as indicated in (13) for the fKdV model, this range is nevertheless included in our 
calculations for the sake of making comparisons between (a)  the fKdV model, (b )  the 
g-B model, for which F is not restricted to be near 1, and ( c )  the experimental data. 
Results of the fKdV model for pm = 0.1 are shown in figure 2 for three different 
Froude numbers. In each case the upper plot shows the development of the surface 
wave elevation with time as viewed in the body frame and the lower curve gives the 
wave resistance coefficient CD, as a function of time. 

For low subcritical (4' < 0.2) and high supercritical speeds (F > 1.2), the initial 
transient period quickly passes, and only local waves near the disturbance remain to 
appear stationary with respect to the moving disturbance. In  these cases, the surface 
elevations predicted by the inhomogeneous linear non-dispersive long-wave equation 
are found to be satisfactory for sufficiently weak disturbances (with only a slight 
underprediction of the wave elevation, see Wu & Wu 1982). Within the Froude 
number range 0.2-1.2, the wave pattern is drastically different from that predicted 
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FIGURE 2. The upper plot shows numerical results for the surface elevation 5 (based on the fKdV 
model) as a function of X and T for the surface pressure distribution (35), with p ,  = 0.1 and 
L/h,  = 2.0; (a) F = 0.85, (b)  F = 1.0, (c )  F = 1 . 1 .  The wave heights are given in the disturbance 
frame and the position of the disturbance is indicated by a solid bar on the T = 0 profile. The lower 
plot gives the wave resistance coefficient aa a function of time. 

T 

by the linear dispersive theory. Positive waves are observed running ahead of the 
disturbance, a phenomenon that is not possible in classical linear theory. For the 
transcritical range of Froude number (F x l),  the present nonlinear theory predicts, 
unlike the well-known singular state given by the linear dispersive theory (cf. Lamb 
1932, 8 177), well-defined waves both leading and trailing the moving disturbance, 
which can be delineated as follows. 

For subcritical speeds (0.25 < F < 0.85), the trailing waves near the disturbance 
change only very slowly, but there is a series of positive waves moving ahead of the 
disturbance, which are small in magnitude compared with the trailing waves. At  
transcritical speeds (0.85 < F < 1.15), a series of large positive waves run ahead of 
the disturbance and a slowly prolonging negative wave of nearly constant depressed 
surface develops immediately behind the disturbance. This depressed region, which 
is pronounced in length only at  near transcritical speeds, is then followed by a train 
of modulated cnoidal waves. Both the amplitude of the upstream-advancing waves 
a, and their generation period T, are increasing functions of F (figure 3). At low 
Froude numbers precursor waves are produced more rapidly; however, they are of 
relatively small amplitude. Above F x 0.8, a, and T, increase very rapidly as F 
approaches the limiting value of about 1.2 in this case. Figures 3-6 were compiled 
from numerical results of the g-B equations with a pressure distribution given by 

For making comparison between the forerunning and trailing waves, we define 
(35). 

r, as as 

at 
T,  = -, 
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FIQURE 3. The amplitude a, and the generation period T, of the first precursor solitary wave 
obtained, numerically from the g-B equations, are shown for the pressure distribution (35) as a 
function of Froude number F ;  p ,  = 0.1 and L/h,  = 2.0 

where a, is the wave height of the undulating trailing wave closest to  the disturbance. 
As F is increased, r,  grows as long as the forward-running waves are generated (see 
figure 4). This trend of increasing r,  illustrates the differences between sub- and 
transcritical speeds ; it summarizes the outstanding feature that for small F the 
trailing waves are the most striking, whereas a t  higher F the leading waves grow to 
substantial size while the trailing waves subside. 

For other values of the pm(0.05-0.2), the general trends discussed above are all 
similar and the dependence of T, on p ,  is presented in figure 5 .  Here we see that, as 
p ,  increases, T, decreases and the upper bound of F ,  above which no solitons are 
generated, becomes slightly larger. 

The overall features of the wave elevations outlined above are in agreement with 
similar numerical results obtained by others (Akylas 1984; Cole 1985; Mei 1986; 
Grimshaw & Smyth 1986; Melville & Helfrich 1987) for slightly different flow 
parameters and forcings, some using the singular delta function as the forcing. 
Relatively few previous works have examined the wave resistance (Lee 1985; 
Ertekin et al. 1986; Wu 1987), and from our numerical results corresponding to the 
cases described above, we have seen that for 0.2 < F < 1.2, CDw(t) has as many 
maxima as the number of upstream-advancing waves. From the wave resistance 
plots (lower curves in figure 2 )  we observe that each relative maximum of CDw 
corresponds to the ‘birth’ of a new precursor wave. Thus, the generation period of 
these waves is easily identified by the oscillations of the wave resistance. For F < 0.8, 
we observe that the oscillatory part of CD, is very small compared with its time- 
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FIGURE 4. The ratio of the amplitude of the first precursor solitary wave and the wave height of 
the first trailing wave crest is shown as a function of the Froude number, based on the g-B 
equations for the pressure distribution (35) with p, = 0.1 and L/h, = 2.0. 
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FIGURE 5. The generation period of the first precursor wave is plotted versus Froude number 
for p ,  = 0.05, 0.1 and 0.15, based on the g-B equations for the pressure distribution (35) with 
L/h,  = 2.0. 
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FIQURE 6. The normalized wave resistance coefficients for the linear dispersive and nonlinear 
models are plotted as functions of the Froude number ; all cases are for the pressure distribution 
(35) with L/h, = 2.0. The linear dispersive theory is from (37), and the nonlinear data are based on 
the g-B equations with p ,  = 0.05, 0.10, and 0.15. 

average value CDW. For the subcritical case ( F <  l),  the difference between a 
maximum and the subsequent minimum values of CDw decreases with time. This may 
imply that the generation of the runaway solitons might cease to be discernible after 
a certain period of time or i t  may settle to a reduced level. We also note that the 
upstream surface level near the leading edge of the disturbance rises, very gradually, 
to a certain value. The time required to reach such a limiting state becomes longer 
as F approaches 1, while the runaway solitons become larger, and the depressed 
region just behind the disturbance becomes more pronounced. For F very close to 1,  
the fluctuations in CD, are nearly as large as CDw and the wave amplitude of the 
runaway solitons is about the same as the wave height of the trailing waves. 
Furthermore, the difference between a maximum and the following minimum 
changes very little as time increases, thus implying that the generation of the 
runaway solitons may continue indefinitely. For F greater than 1.2 approximately, 
the precursor solitons are unable to propagate away from the disturbance, and the 
wave evolution ceases, so that waves appear only localized in the neighbourhood of 
the disturbance. 

The average wave resistance coefficient CDw was evaluated from the numerical 
results by averaging CD, over the time interval between the first and the third 
minimum (or fourth when available). The three CDW curves, normalized by p k  L2/hi,  
are plotted as a function of F in figure 6 for p ,  = 0.05, 0.1, and 0.15. They increase 
from zero a t  F x 0.2 to a maximum a t  F x 0.5-0.6, then decrease slightly as F 
increases to 1 .O before falling off rapidly to  zero in a narrow supercritical range. Also 
presented in figure 6 is the result of CDw obtained from linear dispersive theory. Since 
linear dispersive theory for the steady-state limit predicts that the wave elevation 
becomes unbounded as F approaches unity from below, it may seem surprising to see 
a maximum cDw occurring near F = 0.6 rather than 1 ,  and to see the wave resistance 
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reach a finite limit as F tends to unity from below. In  fact, the wave resistance for 
the pressure disturbance (35) can be found (see Lee 1985) as 

where the dimensionless wavenumber, k = 2n: h,/h, is determined by the dispersion 
relation tanh k 

k 
Fa = - 

There are two limiting cases of interest, one being when F approaches zero from 
above and the other when F approaches one from below ; they are found from (37) 
to be zero and $(pmL/ho)' ,  respectively. Because cDw is zero for F > 1 in linear 
dispersive theory for the steady motion assumed, CDw has a finite discontinuity at 
F = l .  

The range of Froude numbers in which cDw becomes appreciable in magnitude 
corresponds to the range over which precursor solitons are observed from both the 
nonlinear models and the experimental results. Although the linear theory gives 
fundamentally different wave patterns and fails to predict the upstream-advancing 
solitons altogether, the qualitative agreement in the prediction of the wave resistance 
coefficient, however, bears some crude resemblance as seen from figure 6 over the 
whole range of F .  From figure 3 we see that for F > 0.6 precursor solitons of 
noticeable size (a, 2 0.05) begin to form and clearly indicate the need for nonlinear 
models. As the strength of the disturbance is increased, the difference between the 
two theories becomes larger, as would be expected, and so does the range of F over 
which the nonlinear theory predicts appreciable values of the wave resistance. 
Within the Froude-number range 0.2 < F < 0.6, further experimental investigations 
will be required to provide an assessment of the different theories. 

As can be seen from (lo),  the Boussinesq equations differentiate a moving surface 
pressure from a moving bottom topography of the same distribution, while the fKdV 
equation considers both as being equivalent. In figure 7 we compare the results of the 
g-B equations for a surface pressure (35) ,  the g-B equations for a bottom topography 
with the same distribution, and the fKdV equation with the forcing (35). All the 
cases shown in figure 7 are computed a t  F = 1 and with a disturbance strength of 
p ,  = 0.2 or b ,  = 0.2. 

All three calculations reveal upstream-advancing solitary waves, a prolonging 
depressed region immediately behind the disturbance, and a train of trailing cnoidal 
waves. Refined differences are observed in the amplitude of the waves and the period 
of generation for upstream waves. For the g - 3  model, the surface pressure acts as a 
relatively stronger disturbance than the bottom bump, thereby producing relatively 
larger waves in a shorter period. The fKdV model gives results intermediate between 
the two modes of forcing for the g-B model. This basic feature holds for a wide range 
of values of p ,  or b, and Froude number. 

5.  Mass-energy theorem 
As already noted and as illustrated in figure 8, there exist in the body frame of 

reference three uniform states of this transcritical phenomena of resonance : the first 
is the uniform free-stream state with water depth h, and velocity U incident from the 



584 

‘Dw 

S.-J. Lee, G .  T .  Yates and T .  Y .  Wu 

r 

g-B 

(4 

g-B 

p ,  = 0.2 

3 I 

c 

fKdV 

pm = 0.2 

5 

- 
5 - 

g-B 

b, = 0.2 

X 

(6) 
0.08 - 

‘Dw 

J3-B 

pm = 0.2 

0 1 1 1 1 1 1 1 1 1 1 1 1  

0 60 1 20 
T 

FIQIJRE 7. Comparison of (a) the surface wave elevation 5 at T = 120 and ( b )  the wave resistance 
coefficient C’, predicted by the g-B and fKdV models with surface pressure or bottom topography 
given by (35). All cases are for L/h,  = 2.0, F = 1.0 and p ,  or b, = 0.2. 
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FIGURE 8. Illustration of the transcritical water-wave problem in a frame fixed with respect t o  

the disturbance which is originally moving with uniform velocity U to  the left. 

left a t  x,,. The second is the uniform state with depth h, and fluid velocity U, at x1 
in the region of depressed water just behind the disturbance, and the third is the free- 
stream state recovered further downstream of the trailing wavetrain a t  x2. From a 
balance of mass and energy between these uniform states of the flow, Wu (1987) 
developed formulas to predict the wave amplitudes a,, the period of generation T,, 
the depth h, of depression, and the mean wave drag on a steadily moving disturbance 
cDw, once any one of these quantities is given. Here, we extend Wu’s results, which 
were developed only for the critical case of Froude number 1.0, to cover all 
transcritical speeds. Similar mass and energy integrals were developed by Grimshaw 
& Smyth (1986); however, the present work considers in addition the wave 
resistance, the depressed supercritical region following the disturbance, as well as the 
receding velocity of the trailing wavetrain. 

In  the body frame, x = X+FT and t = T ,  where the coordinate X and time T are 
the same as those used above for the fluid frame, the fKdV equation (20) becomes 

5, + ( F  - 1 - 33 CZ -&Cz = +(Pa + b)z. (39) 
Integrating this equation between the two uniform states, xo to xl, and taking the 
time average over the period T, of a precursor solitary wave generation gives 

(401 

where ms = 4(a,/3); is the excess mass of fluid above the undisturbed level 
corresponding to a single free solitary wave of amplitude a,, and h, is the depth of 
water in the depression region a t  xl. Similarly, with the integration of (39) ending a t  
the leading edge of the disturbance xL, we obtain 

“ s = 3  411 - hJ2 + ( F -  1) (1 -w, 
T, 

m 
2 = ;(gL)2-(F-l)cL, (41) T, 

where as in Wu (1987) the oscillatory part of CL( t )  and the surface curvature are 
assumed small compared with the average wave height a t  zL, denoted by cL. 
Although the upstream-advancing waves, upon refined observation, arc slowly 
evolving and vary slightly from free solitary waves (Lee 1985), they are taken for the 
present consideration as fully developed and as free solitary waves. From (40) and 
(41) cL can be found as EL= 1-h1+$(F--l). (42) 

Energy integrals obtained from multiplying (39) by 5 and integrating i t  from xo to 
x, and from x,, to xL give, respectively, 
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F P  
0.85 0.269 
0.90 0.249 
0.95 0.214 
1.00 0.185 
1.05 0.150 
1.10 0.109 

TABLE 1 .  

"s T, Gw 4 Fo, a, T c'n, 4 F", 
0.137 45.3 0.0121 1.137 0.848 0.112 55.6 0.00965 1.144 0.795 
0.201 47.3 0.0119 1.165 0.868 0.200 47.9 0.0121 1.170 0.811 
0.274 50.7 0.0118 1.175 0.876 0.272 50.9 0.0118 1.179 0.838 
0.352 56.0 0.011 1 1.194 0.908 0.370 54.7 0.0127 1.196 0.860 
0.444 66.0 0.0107 1.206 0.930 0.481 65.7 0.0123 1.207 0.887 
0.538 88.0 0.00873 1.212 0.916 0.633 92.7 0.0108 1.212 0.918 

from numerical integration of (39) from equations (45)--(49) 

Comparison of results from numerical integration of (39) and prediction from 
equations (45)-(49) 

where 4 = 8(as/3); is the total energy associated with a free solitary wave of 
amplitude a,, and cDw is the mean wave resistance acting on the disturbance (22). 
Using (42), EL can be eliminated from (43) and (44), which can be rearranged along 
with (40) as 

~ 

a, = q p  + 44 cp + 
.=-( 16 2(P+&) ) ,  5 

3 3p3(p+46) 

c D w  = 2(P+ 2 ~ ) ~ ,  

where p = 1 -h, and 6 = +(F- 1) .  

(45) 

(47) 

Thus, for a given disturbance moving a t  constant transcritica. speed (given S), we 
need only observe the water depth in the depleted region (observed p), then we can 
predict the amplitude of the upstream-advancing waves, the generation period and 
wave resistance using formulas (45)-(47). Table 1 shows that these simple formulas 
predict the period of generation to within about 5% of that obtained from the 
numerical computation for F greater than 0.85 ; the numerical results in this case are 
for the fKdV equation with forcing given by (35) with p ,  = 0.1 and L/h0 = 2.0. 
Similar agreement is obtained for the upstream wave amplitude and wave resistance 
at the lower Froude numbers; however, at supercritical speeds both a, and cDD, 
predicted by (45) and (47) appear to overestimate the numerical results (figure 9). 

From the conservation of mass between xo and xl, Who- U, h, = m,/T,,  we obtain 
the Froude number Fl = Q / c 0  of the flow in the depressed region behind the 
topography as 

By considering mass and momentum conservation in a frame fixed relative to the 
first zero-crossing of the trailing wavetrain (Lamb 1932, 9 187), we obtain 

Fa, = (U-  U , , ) / C o  = [&( 1 + h,)]; ,  (49) 

where Uoc is the velocity of the zero-crossing relative to the moving disturbance, and 
Foc is the Froude number of the leading edge of the trailing wave system referenced 
to the frame with no flow a t  x = & co. Table 1 shows that the values of Fl given by 
(48) are very close to the values obtained from the numerical calculations, and that 
Fl is always supercritical and varies only by a few percent within this transcritical 
range. On the other hand, Foc is always subcritical and approaches 1.0 as the 
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FIQURE 9. Comparison of the precursor solitary wave generation period T, and the averaged 
amplitude of the first few generated solitary waves a,, predicted from the mass-nergy theorem 
(dashed curves), and numerical results (solid curves) for the fKdV model. Also shown is the 
numerical result for p = 1 -h l ,  which was taken as input data along with 6 = i (F-  1) for the 
mass-energy theorem, equation (45) and (46). Numerical results are obtained from the fKdV model 
for the pressure distribution given by (35) with p ,  = 0.1 and L/h,  = 2.0. 

disturbance speed approaches the limiting supercritical value beyond which 
upstream waves cease to occur (F x 1.2). Furthermore, the estimates of Foe, (49), are 
within about 7 % of the numerical results for all transcritical speeds. 

6. Experimental results and comparison with models 
With the objectives to observe and explore experimentally the fascinating 

phenomenon of the generation of nonlinear waves due to continuous forcing, to 
evaluate the numerical models versus experimental observations, and to focus 
directions for further investigations of the underlying mechanism, we carried out a 
series of experiments using a two-dimensional topographical disturbance which was 
made to move uniformly along the bottom of a shallow water tank. The bottom 
topography was preferred to the surface pressure for its ease of construction and 
implementation. Efforts were directed toward accurate measurements of the wave 
elevation and, since the phenomenon is unsteady, we positioned several wave gauges 
at various locations in the tank to monitor the evolution of the waves during and 
after their generation. 

Experiments were conducted in an open flume 7.5 m long, 0.75 m wide and 0.6 m 
deep and water depths varied from 4.0 to 5.33 cm. The sidewalls and bottom of the 
flume were constructed of plate glass and the bottom unevenness was measured at 
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less than kO.1 cm. A two-dimensional topography with a chord of L = 4.9 cm, 
height of 0.65 cm at its midchord, and span of 72 cm was machined of aluminium. In 
cross-section the bump had a circular arc top and a flat base. It was positioned just 
above the floor of the flume with a gap of 0.05 cm a t  the highest location of the floor, 
and was rigidly fastened to a towing carriage by two thin vertical bars adjacent to 
the channel inner side walls. The carriage ran on ball-bearing wheels along two 
parallel tracks mounted above the flanged top of the channel sidewalls. Wave 
elevations were measured using parallel-wire resistance-type wave gauges and the 
speed of the carriage was measured by a tachometer in contact with the track. 

One set of experimental data was obtained from 2 runs of the disturbance along 
the flume. Each run was made at the same speed but in opposite directions. Three 
wave gauges were fixed relative to the flume, and were mounted on a support beam, 
which spanned the entire length of the tank. In  this way we obtained wave gauge 
records at 5 fixed locations from 2 runs of the experiment. Since one of the fixed wave 
gauges was positioned at the middle of the measuring interval, it  was used to check 
the repeatability of the 2 runs. Another wave gauge was mounted on the carriage and 
moved with the disturbance. The position of the moving wave gauge was 1.OL 
upstream (in one run) or 5.0L downstream (in the return passage) from the leading 
edge of the bump. Thus each set of data consisted of 5 fixed and 2 moving wave gauge 
records and a carriage speed curve, all of which were recorded as functions of time. 
To eliminate any sidewalls effects the wave elevations were measured a t  points as 
close as possible to the longitudinal centreplane of the tank. Since the position of the 
bump is a key to the phase of the wave system, we used the experimentally obtained 
carriage speed record a t  the initial acceleration stage as an input to the numerical 
simulation. 

The signals from the wave gauges and tachometer were digitized by an analog-to- 
digital (A/D) data acquisition system with 12-bit resolution and a sampling rate of 
20 Hz per channel. A Sanborn thermal chart recorder (Model 358-1008) along with 
a Sanborn low-gain amplifier bank (Model 958-2900) were used for immediate visual 
inspection of the data. An analog back-up of the data was simultaneously recorded 
on a Hewlett-Packard F M  tape recorder (Model 3968A). 

Calibration of wave gauges was done before and after the experiments for each 
water depth. The wave gauges responded linearly to changes in water surface 
displacement and a proportional conversion constant was obtained by using the 
least-square fit. The average of two calibrations was used for the experimental data 
obtained between two calibrations. The calibration range was typically & 2 cm, and 
the relative error between the two calibrations was typically 2-3 %. The error range 
can be estimated as about 5% for the highest waves measured in the experiments. 

To interpret more accurately the comparison between the experimental data and 
the numerical results, we estimated the effects of energy dissipation on solitons due 
to bottom friction. The empirical formula suggested by Daily & Stephan (1952) for 
the attenuation of a solitary wave in a channel with smooth sidewalls and bottom 
was used to estimate that a soliton would attenuate less than 5 %  a t  the end of our 
experiments. Thus the effects of viscosity on wave propagation were not corrected for 
in the comparison between experimental data and numerical computations. 

The presence of a viscous boundary layer around the bump may be thought to 
increase the effective strength of the bump for the following reasons. As a rough 
estimate of the viscous effects, we can use the displacement thickness of a flat plate 
in steady laminar flow (typical Reynolds number is 3 . 5 ~  lo4) as an effective 
increment of the bump height, which was given in dimensional form as 8, = 
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1.72(vx/U)i (see Schlichting 1979). Taking x = 4.9 cm and U = 40 cm/s, we obtain 
6, = 0.06 cm. Thus, the displacement thickness near the trailing edge is about the 
same as the clearance between the bump and the channel floor. The clearance, 
however, develops Couette flow, which will in turn induce some back-pressure 
gradient and impedance to the flow through the clearance. The bottom unevenness 
was rt0.l em, which is not negligible compared with the bump height, 0.65 em. For 
the numerical simulations, we assumed that the bottom was flat a t  its mean position 
and that there was no flow between the base of the bump and the channel floor. I n  
an attempt to account for bottom unevenness, the bottom-bump clearance, and 
presence of a viscous boundary layer, an effective bump height of 0.8 cm was used 
instead of the actual bump height of 0.65 em. In terms of this effective bump height, 
experiments were performed for b,/h, ranging from 0.15 to 0.2. 

All the main features indicated earlier, namely the upstream-advancing solitary 
waves, the elongating depressed region, and the trailing wavetrain, were observed in 
the experiments. Experimental data along with the numerical solutions predicted by 
the fKdV and the g-B model are shown in figure 10 for b, = 0.15,0.2 and for 
F = 0.7,0.8,0.9,1.0,1.1. We selected the smallest and the largest disturbances for 
comparison to accentuate the differences between theory and experiment, and more 
extensive measurements are given by Lee (1985). 

From this comparison we find that the fKdV model slightly overpredicts the 
amplitude and number of precursor solitary waves experimentally observed for 
subcritical speeds, gives good agreement at critical speeds for small disturbances, and 
underpredicts the upstream waves at supercritical speeds. For the trailing waves the 
fKdV model predicts their amplitudes well a t  critical and supercritical speeds, but 
overpredicts the experiments a t  subcritical speeds. The tendency for the fKdV to 
overestimate the experiments becomes more pronounced for larger disturbances. 

The g-B model slightly underpredicts the amplitude and number of upstream- 
advancing solitary waves experimentally observed and overpredicts the amplitude of 
the trailing waves for the entire range of Froude numbers and disturbance Strengths 
tested. Thus, the g-B model shows a more consistent agreement with variations in F 
and b, than the fKdV model. Further, this is consistent with the ordering of the flow 
quantities assumed in the derivation of the respective models and the requirements 
made for the fKdV model that  F be near 1. 

The results of these comparisons with experiments are considered good for both 
models except for the trailing waves at high subcritical speeds (about 0.8 < F < 0.9) 
and for precursor solitary waves a t  low supercritical speeds (about 1.1 < F < 1.2), 
where variance between the numerical and experimental data are most pronounced, 
especially for relatively strong disturbances. It is precisely in these cases that wave 
breaking was observed during the experiments. 

Because the experiments also reflect other physical effects including viscosity, 
bottom unevenness, and bottom-bump clearance, it is difficult to say definitely 
which model performs better in an overall manner. Over the range of the parameters 
spanned in the current study, the differences between the results predicted by the 
two models are about the same as those between the experimental data and the 
results predicted by either of the two models. The g-B model has the advantage that 
it gives more consistent results over the whole range of Froude numbers and 
disturbance strengths. The fKdV model is no less competent in its performance near 
F x 1, and has the advantage that it may be more suitable for future analytical 
treatment as illustrated in $5. 

We mention here several other observations of qualitative nature which we noted 
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while undertaking the experiments and which may reflect on the nature of this new 
phenomenon. (i) We often observed that when a sufficiently strong upstream- 
advancing wave was formed, the wave first emerged clean near the disturbance, and 
then, as this wave propagated upstream, it began to break some time after i t  left the 
disturbance region. This supports the contention that these upstream waves are still 
evolving even as they move ahead of the disturbance. (ii) A series of tests were 
conducted to determine if the vertical position of the disturbance in the water column 
would influence the resulting wave development. Although no quantitative 
experimental data are given here, we can report that  all the related data appeared 
to be quite independent of the disturbance position. Furthermore, Lee (1987) showed 
that, within the approximation of the KdV model, a surface pressure, a submerged 
body and a bottom topography, with identical functional distribution, all act 
equivalently . 

Owing to  the limited length of the tank it is difficult to  confirm the supposition 
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RGURE 10. Comparison between experimental data (dashed curves) and the numerical results of 
the fKdV and g-B models (solid curves) for various transcritical Froude numbers and for (a) b, = 
0.15, L/h,  = 0.92, and ( b )  b, = 0.20, L / h ,  = 1.23. All data are taken from fixed wave gauges located 
at the distances indicated in parentheses (given in units of h,) upstream of the starting position of 
the disturbance. 

that these runaway solitons will be physically generated without end for F 2 1. 
However, based on the overall agreement between the experimental data and the 
numerical results, we may conclude that the generation of the runaway solitons for 
F >, 1 will last for a very long time, a t  least over the range of parameters used in these 
experiments. For F < 1,  whether a limiting state may be approached in finite time 
remains to be seen. 
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